运算律教学反思

时间:2022-12-02 16:50:00 教学反思 我要投稿

运算律教学反思

  身为一名人民教师,我们要在教学中快速成长,教学的心得体会可以总结在教学反思中,那么问题来了,教学反思应该怎么写?下面是小编精心整理的运算律教学反思,欢迎阅读,希望大家能够喜欢。

运算律教学反思

运算律教学反思1

  教学目标:

  1。使学生经历探索加法运算律的过程,理解并掌握加法的交换律和结合律,初步感知加法运算律的价值,发展应用意识。

  2。使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,培养归纳、推理的能力,逐步提高抽象思维的水平。

  3。使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。

  教学重点:

  让学生在探索中经历运算律的发现过程,理解不同算式的相等关系,概括运算律。

  教学难点:

  概括运算律并会运用。

  教学过程:

  一、创设情境,大胆猜想

  师:为了欢迎听课的老师,咱们班同学准备了几束鲜花。

  出示图:左边有5束鲜花,右边有4束鲜花,一共有几束鲜花?怎样列式?

  生:5+4=9,4+5=9。(师板书:5+4○4+5)

  师(小结):这两个算式结果相等,我们就可以用等号把它们连接,变成一个等式。这个等式里蕴藏着我们今天要探索的规律,猜一猜,是什

  么?是不是所有像这样的加法算式都有这样的规律呢?今天我们继续探究。

  二、自主探索,学习新知

  (一)教学加法交换律

  1。出示情境图:体育课,同学们正在操场上做运动。

  师:从图中你了解到哪些数学信息?你能提出一些用加法解决的问题吗?

  生1:跳绳的有多少人?怎么列式计算?(17+28=45,28+17=45,17+28○28+17)

  生2:女生有多少人呢?(23+17○17+23)

  师:继续观察这两道算式,你发现了什么?中间可以用什么符号连接?

  2。那么,你能再写出几道像这样的等式吗?

  (学生写后,同桌互查,指名交流,师相继板书三道等式) 师:这些都是等式吗?怎样验证?这些等式都有什么特点?

  3。师:像这样的等式还有很多,咱们能举完吗?(师板书省略号)那么,你能用自己喜欢的方法把自己发现的规律表示出来吗?(学生交流后,再看书自学P56)

  提问:通过学习,你知道可以怎样表示?你觉得哪种表示方法最能体现数学简洁明了的特点?(集体反馈并总结,师板书a+b= b+a) 师:这个等式表示什么?(生交流,师板书加法交换律)

  4。师:其实,加法交换律和我们并不陌生。357+218,你想到了什么?(生交流验算的依据)

  师:那么,你知道为什么调换加数的位置,和不变吗?(看的方向不同,但总数不变)

  (二)教学加法结合律 1。课件出示问题:参加活动的一共有多少人?怎样列式计算?(学生交流,师板书:28+17+23)

  师:先算什么?(根据学生的回答,师添上小括号)还可以先算什么? (生加括号,并说计算过程)

  师:这两道算式结果怎样?可以用什么符号连接?(师板书,生齐读)

  2。算一算,下面的○里能填上等号吗?

  (45+25)+13○45+(25+13) (36+18)+22○36+(18+22)

  3。引导比较,发现规律。

  师:比较这几道等式,你发现每组两个算式有什么异同?(同桌讨论后交流)

  师根据学生回答进一步追问:什么变了?什么不变? (引导学生抓住不变的三层含义分析相同点)

  师(小结):其实三个数相加,改变运算顺序,和不变。

  【评析:加法结合律的内容,学生在以往的学习中接触不多,没有太多的感性基础,尽管凭直觉知道左右两边算式结果相等,但对左右两边算式的异同点表述并不是很清楚。这就要求教师要做到心中有数,引导学生

  从变与不变的角度去分析。只有层层剥笋,使学生抓住了加法结合律的本质特征,这样在后面的运算律混合练习中才不会混淆不清。】

  4。你能照样子再写一道这样的算式吗?

  师:既然这样的等式写不完,那么也可以用字母等式来表示这样的规律。如果用字母a、b、c表示三个加数,你能表示出这个规律吗?(学生独立写一写,然后指名板演,师生一起检查这个等式)

  师(小结):三个数连加,先把前两个数相加或先把后两个数相加,再与另一个数相加,和不变。这就是加法结合律。(板书课题)

  5。学习加法结合律又有什么用呢?(出示如下题目)你能很快口算吗?运用了什么?(学生说口算过程,体会加法结合律的用处) 35+40+60 64+(36+78)18+25+75

  【评析:学以致用。如果在学习之后不能使学生很快尝到“甜头”,学生则从心理上就不会完全将新知内化。所以通过快速口算,让学生省略书写过程,只从形式上去感受运用加法结合律带来的好处,强化学习运算律的目标意识。】

  三、巩固练习,深化新知

  师:今天我们学习了什么?有没有信心接受挑战?

  1。下面的等式各用了什么运算律?

  ①82+0=0+82;

  ②47+(30+8)=(47+30)+8;

  ③(84+68)+32=84+(68+32);

  ④75+(48+25)=(75+25)+48。

  2。你能在□里填上合适的数吗?说说你是依据什么填的。 ①6+35=35+□;

  ②a+204=□+a;

  ③(45+36)+64=45+(□+□);

  ④560+(40+c)=(560+□)+ □;

  ⑤560+(180+440)=(560+ □)+□。

  3。完成课本P58第五题,学生独立完成后指名口答。

  4。拓展练习。(挑战题)

  ①64+25+136+75=(64+□)+(25+□);

  ②30+28+70+72=(□+□)+(□+□);

  ③5×4=4×□;

  ④6×4×25=6×(□×□)。

  师:加法交换律、结合律对四个数相加、五个数相加适用吗?更多数相加呢?由加法交换律、加法结合律你还能联想到什么?乘法是否也具有这样的运算律?大家的猜想对不对呢?你们课后能像这节课一样去探究验证一下吗?

  【评析:练习设计既重视基本知识的训练,又能充分挖掘习题的功能,及时进行拓展训练,培养不同层次学生的思维水平。特别是最后两道乘法式题的练习,引导学生在学习加法运算律基础上去猜想乘法是否也具有这样的运算律,为学生沟通了知识之间的联系,实现了学生思维的可持性发展。】

  四、全课小结

运算律教学反思2

  这节课是四年级上册第56-57页的内容,是在学生已经掌握了加法计算方法的基础上展开教学的,通过学习,为学生今后运用规律进行简便计算,提高计算速度打下良好的基础。在教学过程中,根据学生的认知规律,我坚持以“学生为主体”的理念,力求突出以学生发展为本的教育思想,所以整个教学过程以学生自主学习、自主探索为主,通过学生的观察、验证、归纳、运用等数学学习形式,让学生去感受数学问题的探索性和挑战性。

  一、创设情境,营造愉悦的氛围,激发兴趣。

  课前的语言游戏,通过“调侃”的语气,营造轻松愉悦的气氛,同时,游戏方式中渗透着加法交换律的外形特点。接着以学生近期所关注的焦点——校运会为切入点,选择几个学生喜闻乐见的活动场景,激发学生的学习热情,为学生的自主探究创设良好的氛围。

  二、让学生经历有效的探索过程。数学学习的过程是一个发现问题、提出关于解决问题的猜测、尝试解决、验证与修正、形成算法、推广应用的过程。在探索知识形成的过程中,以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“列式猜想——观察发现——举例验证——概括规律”这一数学学习全过程。首先在学生初步认识了28+17=17+28这样的等式以后,引发学生的猜想:是不是其他的两个数相加也有这样的规律呢?让学生写一两个例子并验证,此时再问“像这样的等式你还能写多少个?”学生说“无数个”,唤醒了学生已有的知识经验,使学生初步感知加法运算律。通过四人小组合作探究:说说在写的过程中发现了什么规律?想办法把这个规律表示出来,让学生轻松体会到“两个加数交换位置和不变”这样的规律,学生尝试运用符号、图形、文字和字母等表示规律后,教师再引出简洁的表示方法“a+b=b+a”指出这就是加法交换律,从而发展学生的符号感。在探索加法结合律的过程中,通过引导学生用迁移类推的方法探究加法结合律。在学生动手举例验证后,通过四人小组合作讨论“观察这些等式,你发现了什么规律?”为学生提供自主探索的时间和空间,让学生经历运算律的发现和探索过程,获得成功的体验,增强学生学习数学的信心。

  三、调动学生已有知识的经验,注意数学学习方法的迁移和渗透。

  加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了探究学习的全过程,在此基础上,及时对探究加法交换律的方法做了小结,然后引导学生运用同样的研究方法开展研究加法结合律,利用课件出示探究方法的步骤,通过四人小组合作学习,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。为学生提供足够的自主探索的时间和空间,学生将已有学习方法,迁移类推到探索加法结合律的学习中来,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。

  四、教学中注意沟通知识间的联系。

  在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。

  同时,在教学过程中,我也认识到了一些不足之处:

  学生初次用自己的语言描述加法交换律和结合律比较困难,出现表达不够严谨或不会表达的现象,这时我没有及时补救这种生成问题,引导的不够巧妙,也正是因为这样,耗时比较多,以至后面的练习没能够完成,使得课堂不够自然流畅。

运算律教学反思3

  《运算律》这节课在前测部分有效地进行了知识点的回顾,在学生小卡独立完成的基础上进行同桌2人组的交互,进行第一次思维扩张,在此基础上随即检测,手势表决,并指明汇报,有效地做到了五防。

  在中测部分出示多向度平台,学生自由选择1+3个向度自主学习,体现了学习的自由度,使学生得到不同的需求发展。在交互强化环节,学生8人单元组传阅,批改学习卡,讲解纠错,汇集学习成果,汇报质疑补充,充分发挥了人力资源,做到人人有事做,攀升了强化次数,解决了大容量的学习任务,锻炼了学习能力,提升了学习的自信心。

  在后测部分学生积极主动检测,有效展示学习效果。再次攀升了强化次数,提高了学习效果。

  本节课不足之处在于多向度选择中,学生习惯于从前到后,由浅及深,导致有难度的题目做的人少,或学生没时间完成,今后在这方面鼓励学生基础题跳跃完成,预留大量时间挑战有难度的题目,在完成难题的基础之上再回头完成剩余基础题。

  由于时间紧迫,在后侧环节有些仓促,留给学生的学习时间不够,主要是汇报环节学生占用时间过大,调控时间不够得力,今后加以训练和改正。

  以上是我的教学反思,不到之处,敬请指正。

运算律教学反思4

  加法的交换律和结合律一课是四年级上册的内容,是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上学习的。学生从小学低年级开始就接触过加法的验算和口算等方面的知识,对此有较多的感性认识,这是学习加法交换律和结合律的基础。教材安排这两个运算律都是从学生解决熟悉的德育教育的情景引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。教材有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律地认识由感性逐步发展到理性,合理地构建知识。

  课程标准提出“让学生经历有效地探索过程”。教学中以学生为主体,激励学生动眼、动口、动脑积极探究问题,促使学生积极主动地参与“观察比较——举例验证——得出结论”这一数学学习全过程。学生掌握了学习方法,就等于拿到了打开知识宝库地金钥匙。

  在教学加法,乘法交换律时,主要是渗透“观察比较——举例验证——得出结论”这一学习方法,这其中要注意方法的科学性,因为学生往往只通过一个例子就轻率的得出规律,这时教师就应该引导学生本着严谨科学的学习态度,只有通过一些的举例,和练习来验证,得出规律,体验不完全归纳的数学方法。

  到了加法结合律就要让学生尝试运用这种方法自己去探索规律了。由于加法结合律是本课教学难点。教学中安排了三个层次,首先学生在观察等式,初步感知等式特征的基础上模仿写等式,在模仿中逐步明晰特征。第二层次在观察比较中概括特征,通过“由此你想到了些什么”引发学生由三个例子的共同特征联想到是否具有普遍性。从而得到猜想:是不是所有的三个数相加都具有这样的特征,再通过学生大量的举例,验证猜想,得出规律。

  本课围绕“观察比较——举例验证——得出结论”这一数学方法展开,从学生的学习情况来看,通过本课的学习不但掌握了加法交换律,加法结合律的知识,更重要的是学会了数学方法,所以到课尾出现了学生由加法运算律引深到加法的结合律知识,显示学生掌握数学方法后产生强烈的学习愿望和热情。这正是老师努力培养学生终身学习必备的能力。

  值得一提的是,从循序渐进观察比较,因势利导举例验证,到自然而然结论推出,要充分发挥学生的自主创新,充分引导学生自行归纳,实现了运算律的抽象内化运用的自我和认识飞跃,同时也体验到学习数学的乐趣和成功情感。不能说是这节课的完美之处。

运算律教学反思5

 教学内容:加法交换律和结合律

  教学目标:

  1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。 2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。 3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。 教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换 律和结合律。

  教学难点:使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。 教学过程:

  一、探索加法交换律。

  1、这是某班同学进行体育锻炼的情景图,从图上你了解到哪些数学信息?

  2、根据这些信息,求“跳绳有多少人?”怎样列算式?(出示问题)

  学生口头列算式,教师板书。

  3、师:上面两道算式的得数相同,(板书)我们可以用什么符号把这两道算式连起来?(板书:28+17=17+28)齐读一遍。

  4、列举归纳,积累感知。

  谈话:那么,等号的两边有什么相同的地方,有什么不同的地方?

  照样子,你能再写几个这样的等式吗?(一边写一边算一下等号两边是否相等。)

  学生写出类似的等式,教师有序地板书学生的等式,并口头验证等号前后是否相等

  5、合作交流,概括规律。

  (1)同桌交换本子,检查一同桌写的等式左右两边是否相等?

  (2)仔细观察这些例等式,你发现了什么?

  学生先独立思考,再全班交流。

  (3)小结:通过举例验证,我们发现了这样的规律:两个加数交换位置,和不变。(出示规律,齐读一遍)

  6、个性创造,构建模型。

  (1)谈话:加法当中这样的等式,你能写多少个呢?这是我们需要用简单的办法把这些等式表示出来。你喜欢用什么方法把它写在本子上。(可以用符号、文字、字母)

  (2)学生用符号或字母表示加法交换律,教师巡视,并把典型的进行板书。

  (3)你是怎样表示的?学生介绍自己的表示方法。(Δ+О=О+Δ 甲数+乙数=乙数+甲数 a+b=b+a)

  7、指出:在数学中,一般用字母式子来表示运算规律。a b分别表示两个加数,交换位置后是,它们的和不变,所以用“=”连接起来。(用红笔描一下)

  讲述:字母式子有了,表示什么也知道了,那取什么名呢?叫加法交换律,(板书:加法交换律)

  8、学法指导,评价反思。

  谈话:刚才我们是怎样研究这个规律的?指着黑板,首先发现问题,然后举例验证,最后概括规律,用字母表示。下面我们要来探索加法中的另一个规律,同样要经历这几个过程,你有没有信心学好?

  二、学法迁移,探索加法结合律。

  1.发现问题。

  (1)根据刚才收集到的信息,怎样计算“参加活动的一共多少人?”

  (2)让学生在自备本上各自列式计算,

  (3)全班交流并说出先算什么,板书:28+17+23=68(人) 28+(17+23)=68(人)

  (4)这两个算式得数相同,我们可以把它们写成一个怎样的等式?(板书: 28+17+23=28+(17+23))

  (5)请同学们观察,等式的两边有什么相同点和不同点?

  等号右边先算17+23,左边呢?为了强调第一步先算28+17,暂且加上小括号,这也是为了便于比较。强调“结合”

  2.老师这儿还有两组类似的等式,请同学们算一算,它们是否是等式。集体口

  算。

  先比较每组的两个算式,再比较这三组算式,说说你的发现。

  先独立思考,再小组交流,最后全班汇报。(教师适当点拨)

  3.其他的任意三个数相加是不是也存在这样的情况呢?

  (1)再举一些类似的例子验证一下。(算一算,等式两边是多少)

  (2)谁再来说说你的发现?

  (3)用含有字母的式子来表示这个规律。

  4.师生交流:

  同学们发现了这样的一个规律,三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第三个数相加,和不变。这个规律叫什么?这个规律的特点就是小括号来改变运算顺序,小括号能把括号内的两个数结合起来先算,是加法结合律。(板书:加法结合律)

  5.通过同学们的举例验证,我们发现了加法中的两个运算律。它们是——

  三、巩固内化,拓展应用。

  1.做“想想做做”第1

  重点讨论第4题

  2.填空:

  28+37=□+28

  α+45=45+□

  45+85+67=□+(85+□)

  △++○=□+(□+□)

  3、四(1)班同学植树,第一天植树76棵,第二天上午植了38棵,下午植了24棵,两天一共植了多少棵?

  (1)学生独立完成。(把不同的方法板书在黑板上)

  (2)集体评议:那一题计算简便,为什么?38+76+24要先算76+24,必须要用什么运算定律?

  四、评价鼓励,全课总结。

  今天这节课你学到了什么知识和本领?我们是

  怎样学习的?你有什么感受吗?

  五、作业

  想想做做第3题

运算律教学反思6

  简便运算是一种高级的混合运算,是混合运算的技巧,学好了简便运算,不仅能提高计算能力、计算速度及正确率,还能使复杂的计算变得简单,也就是变难为易,变繁为简,变慢为快。同时能灵活、合理地运用各种定律、性质、法则等达到融会贯通的境界,是计算题中最能锻炼学生思维能力、开拓学生思路的一种题型。所以,在计算题教学中应重视简便运算,注重简便运算灵活思路的学习,合理地进行简便运算,使学生的思维能力得到提高。五年级的简便运算的教学建立在学生已有对简便运算的认识上。小数乘法简便运算是整数乘法简便运算的延伸。

  这节课我以学生先试后导,先练后讲为主线进行设计,突出学生的主体地位,发挥学生知识迁移能力。学生在整体认知小数乘法简便运算的运算律方面较容易,在计算过程中不少学生忽略了小数点的移动,有以下几点值得反思。

  一、复习题的设计针对性强,为新课学习做好铺垫。

  做好已有知识结构的迁移。在复习时先请两名学生到黑板上做:25×12和 87×46+ 54×87 ,同时其他同学集体练习。指名说说自己是怎样想的,提示学生运用的是哪一个乘法运算定律,实际有学生说第二题用的是乘法结合律,我并没有急于否定学生的答案,而是问学生乘法结合律的字母表达式和乘法分配率的字母表达式,并组织学生进行区别,以便更好的运用这两个定律解题。通过复习使每一个学生进一步明确乘法的运算定律及它们之间的联系与区别,更加清楚如何运用运算定律解题。同时渗透并思考,这些运算定律在小数乘法中能不能用,激发学生对小数乘法的简便运算的猜想和求知的欲望。

  二、新课学习先试后导,善用旧知解疑。

  教师出示例题4后,简单分析题意,学生用自己的方法解题。

  0.8×1.3○1.3×0.8

  (0.9×0.4)×0.5○0.9×(0.4×0.5 )

  (3.2+2.8)×0.6○3.2×0.6+2.8×0.6

  有学生通过计算两边的算式结果来判断,大多数学生看见算式联想到简便运算来判断,第一种算法确定算式两边结果相等,第二种算法提供了学生思维判断的方法。这样有效地把整数乘法的运算律和小数乘法结合起来,运算方法在小数乘法中一样有效。

  为了学生更好地运用运算律,安排了三题练习题

  0.25×0.7×4、 1.25×2.4 3.2×1.02

  保留了教材中试一试第一题,修改了第二题,增加了第三题题,第一题让学生理解乘法交换律,第二题运用乘法交换律和结合律,第三题是运用乘法分配律。第二题中2.4的分解是教学时一个难点,不少学生着重把24分解成8×4,忽略了小数点,这个环节的处理不够好,未能预料。第三题的教学也是一个难点,不少学生意识不到把1.02分解成1+0.02,只是一味去分解3.2。

  三、巩固练习类型多样,提高学生能力。

  巩固练习的设计除了根据运算定律填空外,还设计了各种类型的简算题,如:12.5×4.8 0.72×101 3.8×9.9 1.01×2.6 0.25×0.125× 0.4×0.8 0.4×8.2×25-0.3

  这些题里有的接近整数、有的超过整数、有的要先转化再做,有的运用乘法结合律做,有的运用乘法分配律做,有的是部分简算,几乎涵盖了所有小数乘法简算的各种类型 ,另外还出现了部分简算的题,这样的题学生掌握的不好, 关键是根据运算定律判断是否能简算。最后是拓展提高,3.67×8.9 + 36.7×0.11 86.9×1.73 + 8.69×7.3 这两道题分别都有两种解法,学生根据刚才做题的经验,分析后很快发现36.7和3.67 、86.9和8.69可以互相转化,怎样才能使转化后的数的积不变,利用积不变的规律就能解决问题。这样提高了学生分析能力和灵活解题的能力。

  不足之处:

  整节课由于课堂密度较大,所以学生说的多,动笔练习较少,使得一部分同学没有掌握简算的方法,尤其是需要转化的题掌握的不好。其次,在新知识的探索阶段,教师给学生的时间较少,使得同学没有充分发表自己的意见,小组内同学之间交流的较少。

运算律教学反思7

  在教学《小数四则混合运算》时,力求转变学生的学习方式。学习方式的转变是课程改革的显著特征,改变原有的单纯接受式的学习方式,让学生自主感悟的基础上,自然地得出其运算顺序和整数是一样的。

  首先,课堂上以学生比较熟悉的生活中的购物的实例,列出算式,并明确应该先算什么,从实际例子中引导学生得出运算顺序,大大地提高了学生的学习兴趣,克服计算教学中的枯燥乏味的心理。

  其次,课前我是以分类的一种问题情境,以引导学生回顾旧有的知识,不但有助于置学生于问题情境之中,而且利于学生发现问题能力的形成;并且在新知感受的环节中,我仍是将例题以问题的形式呈现,让学生发现问题,解决问题,进而认识问题,明确知识的要点,真正地让学生体验知识的形成。

  最后,在本节课综合练习“计算接力赛”中,采用了小组合作学习形式,我想这样做,不但能改变以往部分“好”学生垄断课堂的局面,大大提高了学生全面参与的程度,而且还将教师对学习过程的干预和控制降低到最低限度,使学生始终拥有高度的自主性,提高了学生的计算兴趣,培养他们合作学习的精神,同时也是促进其计算检查习惯的养成。

  但是,课堂上也出现了自己倍感欠缺的环节:没有很好地处理“新知感受”与“运用练习”两个环节的时间分配,导致练习量的不足,主要原因有以下两点

  1、是对于学生课前的预习程度了解不够,反馈中的问题过多、过繁,还不够简练精辟;

  2、是学生的.基本的口算能力还比较差,使得课堂练习的节奏不快,影响下一环节的进行。看来,还得加强这方面的训练。

运算律教学反思8

  教学目标:

  1、使学生经历探索乘法交换律和乘法结合律的过程,理解并掌握乘法交换律和乘法结合律,并能应用这两个乘法运算律进行一些简便运算。

  2、在学习新知的过程中,培养学生新旧知识间的迁移能力,灵活选择和应用乘法交换律和乘法结合律。

  3、培养学生良好的学习习惯。

  教学重点:

  理解并掌握乘法运算律,能合理应用乘法运算律进行简便计算。

  教学难点:

  灵活选择和应用乘法交换律和乘法结合律,正确计算。

  教学过程:

  一、复习旧知

  1、谈话:加法中有哪些运算律?请举例。

  (加法交换律、加法结合律)

  2、猜想新知:你认为乘法中是否也有类似的定律?

  (学生发表自己的想法)

  二、自主探究

  1、出示挂图

  说说题目的条件和问题分别是什么?列式计算。

  5×33×5

  观察这两道算式,你发现什么?

  用等号将这两道算式连起来。

  学生举例。

  2、给这种运算律取名,并相互用语言表述这种运算律。

  3、集体取名,并交流运算律的内容。

  4、用字母表示这种运算律。

  5、练习

  15×6=6×( ) ( )×46=( )×54

  □×○=( )×( ) a×8=8×( )

  6、自学乘法结合律

  7、集体交流自学情况。

  (1)举例

  (2)用字母表示

  (3)用语言表述乘法结合律的内容

  8、完成“试一试”

  三、巩固练习(略)

  四、课堂小结

  五、课堂作业

  教后反思:

  学生在学习了加法加换律和加法结合律的基础上学习乘法的运算律,相对来说比较轻松,因为乘法的运算律和加法的运算律相似,所以这节课我放手让学生自己去探究规律,这样不仅充分激发了学生学习的积极性,而且使学生体会发现新规律的方法,乘法结合律和乘法加换律相比,用语言完整地表述有一定困难,教师在学生充分交流的基础上帮助学生规范语言,既能使学生获得清晰的认识,又为学生展示自身才能创造了足够的空间。

运算律教学反思9

  这个星期和学生一起学习了乘法运算定律。乘法运算定律包括乘法交换律、乘法结合律。

  学生对于加法运算定律和乘法的交换律掌握较好,然而对于乘法结合律则运用得很糟糕。

  细想有以下几个原因:

  第一,学生现在只是能够初步认识,就算弄明白这几个运算定律,还不明白这几个运算定律的作用和意义。

  第二,学生不能正确的分析算式并正确的运用运算定律,如遇到25× 16就不知道如何计算,有时会把16分成10×6,有时会写成25×10+6 ,针对上述情况还需对学生加强算理、算法的理解,要在学生的脑海中渗透“凑整”的思想

  第三,对于有些算式,有的学生甚至运用运算定律折腾了一番又回到了原来的算式,不会灵活处理。

  综上所述,学生并没有深刻体会到运算定律带来的方便,解决办法只能是多讲多练,不断的培养学生的数感,在不断的重复练习过程中,体会应该如何运用运算定律,也就是如何做题。等接触的题目类型多了,我想学生会得到一个明确地感悟到原来在计算的过程中运用运算定律可以使运算过程变得简单,这样,学生在计算的时候,自然就会去运用了,而且会十分的感兴趣。

运算律教学反思10

  本节课主要内容是加法的交换律和结合律,并且孩子们在小学阶段已经学过假发的结合律何交换律。所以本节课我以2个问题复习导入。第一个问题:有理数加法法则什么?第二个以四道题导入15+28+5=?13+14+6+7=???50+18+10=?12+7+8+3=,回顾用加法交换律和结合律简便计算。在新授内容出示两组对比题,通过让学生观察、比较、猜想、验证。让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律从而得出结论。课已经上完了,现通过反思,找出不足,从而提高自己的教学水平:

  1、提供自主探索的机会本节课以学生身边熟悉的知识点切入,激发学生主动学习数学的需要,为学生进行教学活动创设了良好的氛围。通过学生自己提问题,自己解决问题,对两个算式进行观察比较,唤醒了学生已有的知识经验,使学生初步感知加法运算律。在探索加法运算律的过程中,为学生提国自主探索的时间和空间,使学生经理加法运算率产生的形成的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。

  2、关注学生已有的知识经验。在学习加法运算律之前,学生对加法的运算已有了较多的感性认识,为新知的学习奠定了良好的基础。教学中注意激活学生原有的知识经验,让学生始终处于主动探索知识的最佳状态,促使学生对原有知识进行更新、深化、超越。

  3、引导学生在体验中感悟数学。教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化运用的认识飞跃,同时也体验到学习数学的乐趣。

  不足之处:

  1、在探索加法结合律的过程中应该再放开一些,引导学生观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算律。

  2、安排这两个运算律教学时采用的都是不完全归纳推理,因此在教学加法结合律时也应该让学生多举些列子,让学生去评价举的列子好不好,让学生自己去发现结合是把可以得出整百整十的数放在一起,而不是随意的乱编。然后进一步分析、比较,发现规律,并先后用符号字母表示出发现的规律。

运算律教学反思11

  1、猜想一种学习的方法,很多世界性的难题和这些难题的解决都得益于猜想这样一种学习的方法。

  关于这节课的第一个环节——由加法交换律、加法结合律进而猜想出乘法交换律、乘法结合律的内容。那么我在想我们在解决一个实际的问题时,会不会有一个即定的方法。通常情况下我们不可能知道应该朝哪一个方向去猜想,需要我们去搜索,有时它会突然冒出来(即直觉)。所以我认为猜想的重点是怎样把联想的对象(这里指加法交换律、加法结合律)找出来(即找到一个思考的方向)这应该是这节课的关键。

  2、验证的过程。

  这节课验证的过程是这样:因为所有学生写出来的算式都证明这个定律是正确,所以这个定律是对的。这个过程对吗?实际上这个过程不一定正确,虽然在小学阶段主要采用的是演绎法和不完全归纳法。验证的过程应该是学生对定律内容的理解,举例子只能说明学生对定律内容的一个表层的认识,是非常具体的(即根据定律的字面意思去理解)。应该引导学生从乘法意义上理解乘法交换律(如6×7,7×6它们都表示6个7相加是多少或7个6相加是多少,它们表示的是同一个意义,所以它们的积是相同的),这样的话学生对乘法交换律的理解是更进一步的即在抽象层面上的。我后来觉得是否可以这样:当学生引出了字母公式后,师:我们通过举例子可以知道这个定律是正确的,那你们还有其他的想法?(如果没有)师:能不能根据乘法意义来理解这个乘法交换律?(让学生说说怎么去理解)

  3、缺乏深度。

  从这几个方面来说:1对两个定律的理解,停留在表面没有对内容进行深入的理解(进行抽象的概括)从学生方面来说,缺乏挑战,没有难度。特别对乘法结合律的理解,没有能及时地进行总结,以至当出现于内容不是一致的时候)学生就觉得有点困难。对结合律的理解应该让学生理解到结合律就是三(几)个数相乘,不管那两个数相乘再和第三个数相乘,它们的积都一样。要使学生这样去理解。第一,通过举例子(写出算式来验证);第二,通过生活实际来理解三个数相乘是怎么回事。最后可以问:学习了这两个定律你认为有什么用?(让学生说到可以使计算简便)。我认为如果这样的话,自己这节课有个非常突出的特点就是以一种学习方法贯串整节课:联想_猜想_验证_抽象

运算律教学反思12

  乘法分配律是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证。

  以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,提出的问题:学校要组织“六一”活动,我们班要出一个节目,现在要买服装,这些服装共要多少钱?通过两种方法和算式的比较,使学生初步感知乘法分配律。先让学生根据提供的问题,用不同的方法解决,让学生观察。在此基础上,让学生在讨论中初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?继续为学生提供具有挑战性的研究机会:“请你再写出一些这样的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。

  这样既培养了学生的猜想能力,而且培养学生主动探究、发现知识的能力以及验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。为培养学生数学模型思想,我又让学生试着用字母来表示这个规律,较好的培养了学生的抽象思维能力。对于这个规律,不是仅仅满足于学生理解、掌握乘法结合律,同时注重了对乘法结合律的运用,使学生明白学习规律能给我们带来计算上的方便,感受计算方法的灵活多样,培养学生灵活运用知识进行解题的能力,激发了学生的数学学习兴趣。

  课堂上我还十分注重合作与交流,多向互动。倡导课堂教学的动态生成是新课程标准的重要理念。在数学学习中,每个学生的思维方式、智力、活动水平都是不一样的。课堂上虽然成功引导学生发现了定律,但教完之后,在练习过程中还有部分学生掌握不好, 在下节课练习设计上,我力求有针对性,同时也注意知识的延伸。针对平时学生练习中的错误,在判断题中我安排了(25×9)×4=25×4+9×4,让学生通过争论明白当(25×9)×4时用乘法结合律简算;当(25+9)×4时用乘法分配律简算。在连线题目中,我设计了乘法分配律的扩展型101×58;61×2-31×2;35×16+35×83+35。通过练习让学生明白乘法分配律也可以两个数的差,也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为后面利用乘法分配律进行简算打下伏笔。

运算律教学反思13

  听课是一种学习,听课还是一种思维与思维的交流。我们共同反思,共同成长。听了苏燕文老师的《加法运算律》,真让我有获益不少:

  “动手实践、自主探索与合作交流上学习数学的重要方式”。在探索加法运算律的过程中,教师为学生提供自主探索的时间和空间,使学生经历加法运算律产生和形成的过程,同时也在学习活动中获得成功的体验,增强了学习数学的信心。

  教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化与外化运用的认知飞跃,同时也体验到学习数学的乐趣。

  这节课学生的积极性很高,课堂达到了很好的效果。

  思考:

  在教学中学生是主体,老师只是指导作用。是不是让学生多发言,才是了解学生掌握知识程度的好方法呢?如果老师只是一手包办,对老师来说是一件艰辛的事情,你的课堂也没有活力了。有句话说得好:当老师不理解学生时,课堂上讲得越多,学生不理解到的知识就会越多。

运算律教学反思14

  学生对于加法和乘法的交换律掌握较好,基本能够灵活运用。然而对于加法、乘法结合律则运用不是很好,乘法分配律则更为糟糕。

  归结有以下几个原因:第一,学生现在只是能够认识,弄明白这三个运算定律,还不明白这几个运算定律的作用和意义。(除了少部分思维敏捷的学生之外)。第二,学生能正确的分析算式,并正确的运用运算定律,对学生的已有基础提出了不少的考验,如 42 X 25 ,运用运算定律计算这个算式,很生很多是把 25 分为 20 和 5 ,这样即使运用了乘法分配律,但较之把 42 分成 40 和 2 相比,有很大的出入。这主要是因为学生还没有完全形成 25X4 得 100 这个重要的因素造成的。这里简单的描述为数学 “ 数感 ” 吧,还有 125 和 8 得 1000 一样。第三,有的学生甚至运用运算定律折腾了一番又回到了原来的算式。

  综上所述,解决办法只能是多讲多练,不断的培养学生的数感,在不断的重复练习过程中,体会应该如何运用运算定律,也就是如何做题。其次,等待讲解了下节内容简便运算之后,我想学生会得到一个明确的回答,原来在计算的过程中运用运算定律可以使运算过程变得简单,这样,学生在计算的时候,自然就会去运用了,而且会十分的感兴趣。

运算律教学反思15

  本单元的内容有:加法运算定律,包括加法交换律和加法结合律。乘法运算定律,包括乘法交换律、乘法结合律和乘法分配律。学生对于加法和乘法的交换律掌握较好,可运用这两个定律对一步加法和乘法进行验算,基本能够灵活运用。然而对于加法、乘法结合律则运用不是很好,乘法分配律则更为糟糕。细想有以下几个原因:

  第一,学生现在只是能够认识,弄明白这三个运算定律,还不明白这几个运算定律的作用和意义。(除了少部分思维敏捷的学生之外)

  第二,学生能正确的分析算式,并正确的运用运算定律,对学生的已有基础提出了不少的考验,如42X25,运用运算定律计算这个算式,很多学生是把25分为20和5,这样即使运用了乘法分配律,但较之把42分成40和2相比,有很大的出入。这主要是因为学生还没有完全形成25X4得100这个重要的因素造成的。这里简单的描述为数学“数感”吧,还有125和8得1000一样。第有的学生甚至运用运算定律折腾了一番又回到了原来的算式。

  综上所述,解决办法只能是多练,不断的培养学生的数感,在不断的练习过程中,体会应该如何运用运算定律。

【运算律教学反思】相关文章:

幂的运算的教学反思11-10

混和运算的教学反思11-05

小学数学《混合运算》教学反思11-18

加法交换律教学反思15篇11-20

小数加减混合运算教学反思13篇11-15

《乘法结合律和交换律》教学设计06-09

乘法结合律教学设计02-23

教学教学反思11-10

比例教学教学反思11-29

识字教学教学反思11-26